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1 Introduction

Satisfiability modulo theories (SMT) solving is a powerful tool. However, any client of an SMT solver
faces the challenge of using the solver efficiently. In particular, modern SMT solvers support incremental
solving, so there is often an advantage to asking queries in an order that lets the solver reuse work from
earlier queries when answering new ones. Thus, clients are incentivized to pose queries in a way that has
good “solver locality” and is amenable to effective incremental solving.

Because they are both used for automated reasoning tasks, there is a natural appeal to augmenting
logic programming systems with the capabilities of SMT solving. One such hybrid system, Formu-
log [3], does this by extending Datalog with terms that represent SMT formulas and an interface to an
external SMT solver. However, the notion of “solver locality” raises a potential problem for Formulog
and other logic programming systems that embrace Kowalski’s principle [8] of separating the logic of a
computation from its control: The programmer cannot easily control the order of computations, and the
language runtime might perform them in an order that has low solver locality.

For example, consider using Formulog to explore simple paths in a directed graph whose edges
are labeled with SMT propositions. A path is explored only if the conjunction of its edge labels is
satisfiable. This computation would have clearly good solver locality if it consecutively checked the
satisfiability of similar paths (e.g., paths with a large common prefix); such a result might be achieved
by using a sequential depth-first search (DFS) of the graph, starting at each node in turn. However, the
same is not obviously the case for Formulog: because of its parallelized bottom-up evaluation algorithm,
it effectively performs a breadth-first search of the graph starting from each node of the graph in parallel.
Thus, paths discovered around the same time might not share a very large common prefix; in fact, they
might be completely disjoint! Given the lack of obvious solver locality, it is not clear if this Formulog
program should expect any advantage from incremental SMT solving.

We show empirically that, even in this setting, incremental SMT solving can in fact speed up logic
programs that make SMT queries. We do so by evaluating the effectiveness of two lightweight encoding
mechanisms that mediate between Formulog and an external SMT solver. The mechanisms use different
capabilities defined in the SMT-LIB standard [2]: the first explicitly manages a solver’s assertion stack,
while the second checks satisfiability under retractable assumptions. The latter strategy consistently leads
to speedups over a non-incremental baseline across a variety of benchmarks involving different SMT
solvers and SMT-LIB logics, suggesting that logic programming systems can indeed take advantage of
incremental, black-box SMT solving.

2 Making incremental SMT calls

A Formulog user builds complex terms representing SMT formulas and reasons about them with built-in
operators like is_sat and get_model. When an SMT operator is invoked, the Formulog runtime takes
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the SMT query, serializes it into the SMT-LIB format, ships it off to an external solver, and returns the
result. The serialization code takes a list of conjuncts as input; its job is to assert these conjuncts to
the SMT solver in a way that leads to efficient solving. We evaluate three different strategies for SMT
clients: a baseline non-incremental strategy and two incremental strategies.

First, some background: SMT-LIB-compatible solvers maintain a stack of assertion frames. Frames
can be pushed on and popped off the stack using the commands push and pop. When a frame is popped,
the solver’s state is reset to the state it had before that frame was added, forgetting any assertions made
since the corresponding push command along with any consequences derived from those assertions.

Our baseline, non-incremental strategy clears the solver’s assertion state between every satisfiability
check: When it serializes an SMT query, it generates code that pushes a fresh frame on the stack, asserts
each conjunct, checks for satisfiability, and then pops the frame it added.

Our second strategy (PP) explicitly pushes and pops the solver’s stack to enable incremental solving.
When serializing a query, PP pops off frames until the solver’s assertion stack is a prefix of the current
list of conjuncts, pushes assertions for each of the remaining conjuncts of the query, and then checks
for satisfiability. PP provides incremental solving when adjacent queries share large common prefixes.
PP works well for clients who explore a constraint space using DFS (since the stack disciplines match
up), but penalizes clients who use search techniques that align less well with using a stack (breadth-first
search, heuristic searches, etc.).

Our final strategy (CSA) uses the check-sat-assuming SMT-LIB command, which checks the sat-
isfiability of the solver’s assertion state assuming particular truth values for some given boolean variables.
CSA uses a layer of indirection to treat the solver’s assertion state as a cache of assertions that can be
enabled or disabled for a particular query [6]: instead of asserting a conjunct φ directly, CSA asserts the
implication x =⇒ φ , where x is a fresh boolean variable. To check the satisfiability of a query including
φ , we include x in the list of literals provided to the check-sat-assuming command. Formulog’s CSA
client maintains a map from conjuncts to boolean variables to keep track of which variables should be
enabled for a particular query and to ensure that no conjunct is ever asserted more than once.

SMT clients using CSA need not manage an explicit stack of assertions; there is no penalty for
exploring the constraint space in a way that does not align well with using a stack. Intuitively, CSA
should be a boon for logic programming systems like Formulog that do not use a DFS-based search.

3 Results

We empirically evaluated two hypotheses: (H1) Formulog should be able to take advantage of incre-
mental SMT solving; i.e., either PP or CSA should outperform the non-incremental baseline strategy
on most benchmarks; (H2) CSA should deliver more consistent and more substantial speedups than
PP. To evaluate these hypotheses, we tested the relative performance of the three strategies on three
Formulog programs given a variety of inputs.

The first program performs symbolic execution [7] over a simple imperative language. We ran the
tool on six different input programs. We tried the solvers Z3 (v4.8.8) [9], CVC4 (v1.7) [1], and Boolector
(v3.2.1) [10] (all set to use the logic QF_ABV). In all 18 cases, the baseline was bested by an incremental
strategy (H1); CSA achieved the best speedup in 12 of these cases (H2).

The second program type checks programs written in Dminor [4], a language with refinement types
that are encoded as SMT formulas. We ran the type checker on three input programs, using the solver
Z3 with the logic ALL. CSA had the best improvement over the baseline in all three cases (H1, H2).

The third program computes reachability on graphs with edges labeled by propositions; a path is fea-
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sible only if the conjunction of the propositions along that path is satisfiable. We computed reachability
on 24 random graphs in various bit vector and linear integer arithmetic (LIA) logics. We used the solvers
Z3, CVC4, and Yices (v2.6.2) [5], and additionally Boolector for the graphs with bit vector formulas.
The incremental strategies were better than the baseline on 60 of 84 experiments (H1), and CSA had the
best improvement in 59 cases (H2). Of the cases where there was no gain by using incremental solving,
14 were clustered in the experiments with logics combining LIA and arrays.

Overall, out of 105 experiments, either PP or CSA beat the non-incremental baseline in 81 cases
(H1X). CSA provided a speedup in 79 cases, compared to 39 for PP; there were only two cases where
PP provided a speedup and CSA did not, and only five where both strategies led to speedups but PP was
faster than CSA (H2X). Thus, our evaluation confirms our hypotheses: CSA is an effective, lightweight
mechanism for integrating a logic programming system with an incremental SMT solver.
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